1. DATOS GENERALES

Modalidad: PRESENCIAL		Departamento	Departamento:		Área de Conocimiento:	
ESPE LTGA-G RODRIGUEZ LARA		CIENCIAS DE L	CIENCIAS DE LA COMPUTACION		COMPUTACIONALES	
Nombre Asignatura:	Período Acade	Período Académico:				
MODELOS DISC PA	RA ING SO	PREGRAI	OO S-I MAY21 - SEF	P21		
Fecha Elaboración:		Código:	NRC:		Nivel:	
11/12/20 07:36	S PM	A0F03	5207		PREGRADO	
Docente:					,	
GUERRA	CRUZ LUIS ALE	BERTO				
lagu	laguerra@espe.edu.ec					
Unidad de Organización		BÁSICA	·	·		
Campo de Formación:		PRAXIS PROFESION	NAL			
Núcleos Básicos de		FUNDAMENTOS DE	PROGRAMACI	ÓN, ALGEBRA	LINEAL	
CARGA HO	RARIA POR	COMPONENTES DE	APRENDIZAJE		SESIONES	
DOGENOIA	PRACTICAS	S DE APLICACIÓN Y	APRENDIZAJ	E AUTÓNOMO	SEMANALES	
DOCENCIA	EXPE	RIMENTACIÓN			6	
48	48		48		O	
Fecha Elaboración Fe		Fecha de Actu	llización Fecha de E		de Ejecución	
27/11/2020 07/12/202		20	30	0/11/2020		

Descripción de la Asignatura:

Los Modelos Discretos para Ingeniería permiten el modelamiento de sistemas discretos enfocados para aplicaciones en ingeniería. Constituyéndose en un fundamento matemático conceptual para distintas áreas o dominios tales como probabilidades, optimización discreta, redes, simulación, matemáticas financieras, programación de computadores y modelamiento de sistemas de información, entre otros.

Contribución de la Asignatura:

Esta asignatura corresponde a la primera etapa del eje de formación profesional, proporciona al futuro profesional los conocimientos matemáticos para entender, inferir, aplicar y desarrollar modelos matemáticos tendientes a resolver problemas, aplicando algoritmos y lenguajes de programación cumpliendo las especificaciones dadas y trabajo en equipo.

Resultado de Aprendizaje de la Carrera: (Unidad de Competencia)

Diseñar, seleccionar, implementar, integrar y administrar sistemas, procesos, componentes o programas basados en computadores para satisfacer las necesidades empresariales.

Objetivo de la Asignatura: (Unidad de Competencia)

Interpretar, aplicar leyes y principios de lógica proposicional, así como utilizar los principios de permutaciones o combinaciones y los fundamentos de la computabilidad y complejidad a través del desarrollo de algoritmos demostrativos proposiciones matemáticas y problemas relativos a probabilidades discretas enfocados en la evaluación del software y de experimentos relacionados a la ingeniería permitiendo la resolución de problemas ingenieriles.

Resultado de Aprendizaje de la Asignatura: (Elemento de Competencia)

- Utiliza los formalismos de la lógica proposicional y funcional para la representación y explotación de sistemas basados en conocimiento.
- Identifica los principios y leyes de la teoría de conjuntos, inducción matemática y recursividad, orientados a la solución de problemas ingenieriles.
- Aplica los fundamentos de la computabilidad y complejidad algorítmica en la evaluación del software.
- Representa y soluciona problemas de ingeniería mediante la teoría de grafos y árboles.
- Participa activamente en un equipo de trabajo, desarrollando y analizando los modelos discretos que soportan a las ingenierías relacionadas con la computación.

Proyecto Integrador

Desarrollar una simulación por eventos discretos , utilizando una técnica informática de modelado dinámico de sistemas que permita un control en la variable del tiempo, a intervalos variables, en función de la planificación de ocurrencia de tales eventos a un tiempo futuro.

PERFIL SUGERIDO DEL DOCENTE

TÍTULO Y DENOMINACIÓN

GRADO: ING. SISTEMAS E INFORMATICA O AFINES

POSGRADO: AFINES AL AREA DE CIENCIAS DE LA COMPUTACIÓN

2. SISTEMA DE CONTENIDOS Y RESULTADOS DEL APRENDIZAJE

CONTENIDOS					
Unidad 1	Horas/Min:	32:00	HORAS DE TRABAJO AUTÓNOMO		
PROPOSICIONAL Y FUNCIONAL			Prácticas de Aplicación y Experimentación		n
1.1 Introducción a la Lógica					
1.1.1 Proposiciones condicionales y bicondi	cionales		Tarea 1	Desarrollo de ejercicio	s propuestos
1.1.2 Equivalencia lógica: Leyes de la lógica	a proposicional		Tarea 2	Desarrollo de ejercicio	s propuestos
1.1.3 Implicación lógica: Reglas de inferenc proposiciones	ia para		Tarea 3	Desarrollo de ejercicio	s propuestos
1.2 Métodos de demostración					
1.2.1 Cuantificadores existencial y universa	I		Tarea 4	Ejercicios sobre cuanti	ficadores
1.2.2 Validez y sistemas de prueba en pred	icados		Tarea 5	Ejercicios de valido predicados	ez y prueba de
1.3 Teoría y Relaciones de conjuntos					
1.3.1 Operaciones relacionales: selección, punión	oroyección y		Tarea 6	Ejercicios sobre (RELACIONALES: PROYECCIÓN Y	SELECCIÓN,
1.3.2 Relaciones entre conjuntos			Tarea 7	EJERCICIOS SOBRE RELACIONES ENTRE CONJUNTOS	
1.4 Representación del conocimiento					
1.4.1 Lógica de Predicados del Primer Orde	en (LPPO)		Laboratorio 1	APLICACIÓN SOBI PREDICADOS DEL I (LPPO)	
ACTIVIDADE	S DE APRENDI	ZAJE / H	IORAS CLASE		
COMPONENTES DE DOCENCIA					16
PRÁCTICAS DE APLICACIÓN Y EXPERIMENTACIÓN					16
HORAS DE TRABAJO AUTONOMO					16
TOTAL HORAS POR UNIDAD					48

CONTENIDOS					
Unidad 2		Horas/Min:	32:00	HORAS DE	TRABAJO AUTÓNOMO
COMPLEJIDAD A	LGORITMICA			Prácticas de	Aplicación y Experimentación
2.1 Teoría co	mbinatoria: permutaciones y combina	ciones			
2.1.1.	Principios fundamentales de conteo			Tarea 1	EJERCICIOS SOBRE PRINCIPIOS FUNDAMENTALES DE CONTEO
2.1.2. combinaciones	Definición y Teorema de permutaciones	s y		Tarea 2	EJERCICIOS SOBRE TEOREMA DE PERMUTACIONES Y COMBINACIONES
2.1.3 Probabilio	dad discreta			Tarea 3	EJERCICIOS SOBRE PROBABILIDAD DISCRETA
2.2 Inducción	n y recursión				

2. SISTEMA DE CONTENIDOS Y RESULTADOS DEL APRENDIZAJE

2.2.1 contradicció	Técnicas de demostración: prueba directa, ón e inducción	Laboratorio 1	APLICACIÓN SOBRE DEMOSTRACIÓN: PF CONTRADICCIÓN E	RUEBA DIRECTA,	
2.3 Algor	itmos				
2.3.1	Características y Análisis de un algoritmo	Tarea 4	EJERCICIOS SOBRE ALGORITMO	ANÁLISIS DE UN	
2.3.2	Ejecución de algoritmos	Laboratorio 2	ANÁLISIS Y EJ ALGORITMOS	ECUCIÓN DE	
2.4 Recu	rrencia				
2.4.1	Ecuaciones de recurrencia	Tarea 5	EJERCICIOS SOBR DE RECURRENCIA	E ECUACIONES	
2.4.2	Relaciones y clases de recurrencia	Tarea 6	EJERCICIOS SOBRE CLASES DE RECURI		
		Tarea 7	EJERCICIOS SOBRE CLASES DE RECURI		
2.5 Comp	outabilidad de problemas				
2.5.1	Complejidad Computacional espacial y temporal	Tarea 8	EJERCICIOS SOBRE COMPUTACIONAL TEMPORAL		
2.5.2	Orden Relaciones y Operadores de algoritmos	Laboratorio 3	APLICACIÓN INTEG RELACIONES Y OP ALGORITMOS		
2.5.3	Funciones, sucesiones y series	Tarea 9	EJERCICIOS SOBR SUCESIONES Y SE	,	
	ACTIVIDADES DE APRENDIZA	AJE / HORAS CLASE			
COMPONENTE	COMPONENTES DE DOCENCIA				
PRÁCTICAS D	PRÁCTICAS DE APLICACIÓN Y EXPERIMENTACIÓN				
HORAS DE TR	HORAS DE TRABAJO AUTONOMO				
TOTAL HORAS POR UNIDAD					

	CONTENIDOS						
Unidad 3	Horas/Min: 32	2:00 l	HORAS DE	TRABAJO AUTÓNOMO			
GRAFOS, ARBOLES Y AUTOMATAS FINITOS		F	Prácticas de	Aplicación y Experimentación			
3.1 Fundar	mentos Básicos						
3.1.1	Elementos de un grafo						
3.1.2	Definición de grafos dirigidos y no dirigidos						
3.1.3	Caminos, recorridos, circuitos; simples y ciclos	т	area 1	EJERCICIOS SOBRE CAMINOS, RECORRIDOS, CIRCUITOS; SIMPLES Y CICLOS			
		т	area 2	EJERCICIOS SOBRE CAMINOS, RECORRIDOS, CIRCUITOS; SIMPLES Y CICLOS			
		т	area 3	EJERCICIOS SOBRE CAMINOS, RECORRIDOS, CIRCUITOS; SIMPLES Y CICLOS			
3.1.4	Conexidad, subgrafos recubridores e inducidos	т	area 4	EJERCICIOS APLICANDO CONEXIDAD, SUBGRAFOS RECUBRIDORES E INDUCIDOS			
3.1.5	Grafos bipartidos, completos y complementos	т	area 5	EJERCICIOS APLICANDO GRAFOS BIPARTIDOS, COMPLETOS Y COMPLEMENTOS			
3.2 Caracte	erísticas de Grafos						
3.2.1	Isomorfismo de grafos, grado de un vértice						

2. SISTEMA DE CONTENIDOS Y RESULTADOS DEL APRENDIZAJE

	DRAS POR UNIDAD			16 48
HORAS DE TRABAJO AUTONOMO				
PRÁCTICAS DE APLICACIÓN Y EXPERIMENTACIÓN				
COMPONENTES DE DOCENCIA				
	ACTIVIDADES DE APRENDIZAJE	HORAS CLASE		
3.4.3 3.4.4	Autómata finito y diseño de autómatas Clasificación de autómatas finitos (AF)	Tarea 8	QUE FACILITAN E AUTÓMATA FINIT	
		Laboratorio 7	APLICATIVO INTE PROPIEDADES Y C DE GRAMÁTICAS REGULARES IDENTIFICACIÓN DE	ONFORMACIÓN Y LENGUAJES COMPONENTES
3.4.2 lenguajes	Propiedades y conformación de gramáticas y regulares	Laboratorio 7	APLICATIVO INTE PROPIEDADES Y C DE GRAMÁTICAS REGULARES	ONFORMACIÓN
3.4.1	Lenguajes y expresiones regulares			
	iguajes y Autómatas Finitos		NOTACIÓN POLA	
3.3.6	Arboles de decisiones y de juegos	Laboratorio 6	APLICATIVO SOE BINARIOS (OPER	BRE ARBOLES
3.3.5	Arboles binarios (operaciones en notación polaca)	Laboratorio 5	APLICATIVO SOE BINARIOS (OPER NOTACIÓN POLA	RACIONES EN
3.3.4	Algoritmos de búsqueda (orden lexicográfico)	Laboratorio 4	APLICATIVO SOBR DE BÚSQUED LEXICOGRÁFI	A (ORDEN
3.3.3	Ordenes en árboles: preorden, posorden y simétrico	Laboratorio 3	APLICATIVO SOBF	
3.3.2 grafo	Arboles isomorfos, árbol recubridor y generador de un	Tarea 7	EJERCICIO QUIDENTIFICAR GRAFOS BIILHOMEOMORF	AFOS PLANOS, PARTIDOS,
3.3.1	Definiciones básicas y aplicaciones			
3.2.4 3.3 Arb	Grafos planos, grafos bipartidos, homeomorfismos	Tarea 6	IDENTIFICAR GRAGERAFOS BITHOMEOMORF	PARTIDOS,
			DE HAMILTON EJERCICIOS QU	
3.2.3	Ciclos hamiltonianos, el dodecaedro de Hamilton	Laboratorio 2	APLICATIVO SO HAMILTONIANOS, E	
3.2.2	Recorridos eulerianos, siete puentes de Königsberg	Laboratorio 1	APLICATIVO SOBRI EULERIANOS, SIET KÖNIGSBERG	

3. PROYECCIÓN METODOLÓGICA Y ORGANIZATIVA PARA EL DESARROLLO DE LA

Metodos de Enseñanza - Aprendizaje

- 1 Talleres
- 2 Clase Magistral
- 3 Resolución de Problemas
- 4 Investigación Exploratoria
- 5 Diseño de proyectos, modelos y prototipos

6 Prácticas de Laboratorío

Empleo de Tics en los Procesos de Aprendizaje

- 1 Herramientas Colaborativas (Google, drive, onedrives, otros)
- 2 Material Multimedia
- 3 Software de Simulación
- 4 Aula Virtual

4. RESULTADOS DEL APRENDIZAJE, CONTRIBUCIÓN AL PERFIL DEL EGRESO Y TÉCNICA DE

RES	OYECTO INTEGRADOR DEL NIVEL SULTADO DE APRENDIZAJE OR UNIDAD CURRICULAR	Niveles de logro: Alta(A), Media (B), C(Baja).	ACTIVIDADES INTEGRADORAS
1.	INTERPRETAR, APLICAR LEYES Y PRINCIPIOS DE LÓGICA PREPOSICIONAL PARA LA RESOLUCIÓN DE PROBLEMAS DE INGENIERÍA	Media B	Identifica las situaciones dadas en la vida real, a través de proposiciones lógicas y razonamiento lógico
2.	APLICA LOS PRINCIPIOS DE PERMUTACIONES O COMBINACIONES Y LOS FUNDAMENTOS DE LA COMPUTABILIDAD Y COMPLEJIDAD PARA RESOLVER A TRAVÉS DEL DESARROLLO DE ALGORITMOS DEMOSTRATIVOS PROPOSICIONES MATEMÁTICAS Y PROBLEMAS RELATIVOS A PROBABILIDADES DISCRETAS ENFOCADOS EN LA EVALUACIÓN DEL SOFTWARE Y DE EXPERIMENTOS RELACIONADOS A LA INGENIERÍA	Alta A	CREA ALGORITMOS EFICIENTES Y COMPLEJOS APLICANDO LOS PRINCIPIOS DE PERMUTACIONES O COMBINACIONES
3. 4	UTILIZA ALGORITMOS DE LAS TEORÍAS DE GRAFOS, ÁRBOLES Y AUTÓMATAS FINITOS PARA REPRESENTAR Y SOLUCIONAR PROBLEMAS DE LA INGENIERÍA	Alta A	ANALIZA Y DESARROLLA ALGORITMOS COMPLEJOS APLICANDO LAS TEORÍAS DE GRAFOS, ÁRBOLES Y AUTÓMATAS FINITOS

6. TÉCNICAS Y PONDERACION DE LA EVALUACIÓN

Técnica de evaluación	1er Parcial	2do Parcial	3er Parcial
Pruebas oral/escrita	4	4	4
Trabajo Colaborativo	6	6	6
Examen Parcial	6	6	6
Tareas o guías	4	4	4
TOTAL:	20	20	20

7. BIBLIOGRAFÍA BÁSICA/ TEXTO GUÍA DE LA ASIGNATURA

CÓDIGO: SGC.DI.321 VERSIÓN: 1.3 FECHA ÚLTIMA REVISIÓN: 23/09/14

Titulo	Autor	Edición	Año	Idioma	Editorial
Matemáticas Discretas	Johnsonbaugh, Richard	-	2005	spa	México : Pearson Educación
Estructura de matemáticas discretos para la computación	Kolman, Bernard	-	1986	Español	México, D.F. : Prentice- Hall
Matemáticas discretas con teoría de gráficas y combinatoria	Veerarajan, T.	-	2008	spa	McGraw Hill Interamericana

8. BIBLIOGRAFÍA COMPLEMENTARIA

Titulo	Autor	Edición	Año	Idioma	Editorial
Elementos de Matemáticas Discretas	LIU CL	SEGUNDA	1997	ESPAÑOL	McGRAW HILL

9. LECTURAS PRINCIPALES

Tema	Texto	Página	URL
AUTÓMATAS, GRAMÁTICAS Y LENGUAJES	MATEMATICAS DISCRETAS	506	https://www.academia.edu/401 58994/MATEM%C3%81TICAS _DISCRETAS_Richard_Johns onbaugh_Sexta_edici%C3%B 3n

10. ACUERDOS

Del Docente:

- Mantener en todo momento un clima de empatía y consideración entre estudiantes, profesores, administrativos, trabajadores, etc.
- 2 Cumplir con las leyes y reglamentos institucionales y orientar todos los esfuerzos en la dirección de los grandes propósitos de la Universidad (Misión, Visión)
- Cumplir con las obligaciones de estudiantes y docentes para devengar la inversión que hace el estado Ecuatoriano en favor de los mismos.
- 4 Esforzarme en conocer con amplitud al campo académico y práctico
- 5 Asistir a clases siempre y puntualmente dando ejemplo al estudiante para exigirle igual comportamiento
- Motivar, estimular y mostrar interés por el aprendizaje significativo de los estudiantes y evaluar a conciencia y con justicia

De los Estudiantes:

- 1 Firmar toda prueba y trabajo que realizo en conocimiento que no he copiado de fuentes no permitidas
- 2 Colaborar con los eventos programados por la institución e identificarme con la carrera
- 3 Llevar siempre mi identificación en un lugar visible
- 4 Mantener en todo momento un clima de empatía y consideración entre estudiantes, profesores, administrativos, trabajadores, etc.
- 5 Cumplir con las leyes y reglamentos institucionales y orientar todos los esfuerzos en la dirección de los grandes propósitos de la Universidad (Misión, Visión)
- 6 Cumplir con las obligaciones de estudiantes y docentes para devengar la inversión que hace el estado Ecuatoriano en favor de los mismos.
- 7 Ser honesto, no copiar, no mentir

